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In an effort. to determine the characteristics of the various types of convection that 
can occur in a fluid-saturated porous medium heated from below, a Galerkin approach 
is used to investigate three-dimensional convection in a cube and two-dimensional 
convection in a square cross-section. Strictly two-dimensional, single-cell flow in a 
square cross-section is steady for Rayleigh numbers R between 4n2 and a critical value 
which lies between 300 and 320; it is unsteady at higher values of R. Double-cell, 
two-dimensional flow in a square cross-section becomes unsteady when R exceeds a 
value between 650 and 700, and triple-cell motion is unsteady for R larger than a 
value between 800 and 1000. Considerable caution must be exercised in attributing 
physical reality to these flows. Strictly two-dimensional, steady, multicellular con- 
vection may not be realizable in a three-dimensional geometry because of instability 
to perturbations in the orthogonal dimension. For example, even though single-cell, 
two-dimensional convection in a square cross-section is steady at R = 200, it cannot 
exist in either an infinitely long square cylinder or in a cube. It could exist, however, 
in a cylinder whose length is smaller than 0.38 times the dimension of its square 
cross-section. Three-dimensional convection in a cube becomes unsteady when R 
exceeds a value between 300 and 320, similar to the unicellular two-dimensional flow 
in a square cross-section. Nusselt numbers Nu, generally accurate to 1 %, are given for 
the strictly two-dimensional flows up to R = 1000 and for three-dimensional con- 
vection in cubes up to R = 500. Single-cell, two-dimensional, steady convection in a 
square cross-section transports the most heat for R < 97; this mode of convection is 
also stable in square cylinders of arbitrary length including the cube for R < 97. 
Steady three-dimensional convection in cubes transports more heat for 97 5 R 5 300 
than do any of the realizable two-dimensional modes. At R 2 300 the unsteady 
modes of convection in both square cylinders and cubes involve wide variations 
in Nu. 

1. Introduction 
Finite-amplitude thermal convection in fluid-saturated porous material heated 

from below can take a variety of forms including both steady and unsteady, three- 
dimensional and multicellular motions. I n  this paper we discuss three-dimensional 
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flows in a cube and strictly two-dimensional flows in a square cross-section. The 
circumstances in which these two-dimensional flows can be realized in a three- 
dimensional world are often quite limited because of instabilities which can occur 
through the other dimension. 

On the basis of linear theory, steady two-dimensional convection with n cells in a 
square cross-section is possible for Rayleigh numbers R which exceed n2(nz + 1)2/nz 
(Horton & Rogers 1945; Lapwood 1948). Such flows have been studied, a t  Rayleigh 
numbers up to several times the critical value, by Elder (1967), Holst & Aziz (1972) 
and Palm, Weber & Kvernvold (1972). Here, we calculate steady two-dimensional 
convection for R up to 1000; Caltagirone (1975) has given results for R as large 
as 2000. 

At sufficiently high Rayleigh number, two-dimensional convection becomes oscil- 
latory (Horne & O’Sullivan 1974; Horne 1975, 1979; Caltagirone 1975). However, the 
Rayleigh number for the onset of this oscillatory behaviour has not been well deter- 
mined. Horne & O’Sullivan (1974) investigated the Rayleigh number range 50 to 
1250 and reported oscillatory behaviour only in the unicellular mode at  R 2 280; 
their multicellular solutions in this range of Rayleigh number were steady. On the 
other hand, Caltagirone (1975) asserted that unicellular convection becomes oscillatory 
for Rayleigh numbers exceeding 384 f 5 while bicellular convection becomes oscil- 
latory for R between 800 and 1000. Based on these studies and results obtained in 
this paper, it appears that all two-dimensional multicellular patterns of convection 
become oscillatory with increasing Rayleigh number. The larger the number of cells 
is, the higher is the value of R a t  the onset of oscillatory behaviour. 

One must exercise considerable care in attempting to apply the results of strictly 
two-dimensional studies to convection in three-dimensional geometries because the 
results simply may not carry over. Straus (1974) has shown that steady single-cell, 
two-dimensional convection cannot occur in infinitely long square cylinders for R 
larger than about 200, although the strictly two-dimensional calculations yield steady 
flows for R as large as about 300. The existence of steady, unicellular, two-dimensional 
convection in square cylinders with finite length can be determined from the stability 
analysis of Straus & Schubert (1978). If the ratio of the cylinder length to the dimension 
of the square cross-section lies between 0.3% and 0 . 6 1 ~ ~  (where n is any positive 
integer) then the flow cannot exist a t  R > 200. In  particular, steady, unicellular, 
two-dimensional convection cannot exist in a cube at  Rayleigh numbers larger than a 
value somewhat below 200. At R = 200, the flow can exist in stubby cylinders whose 
lengths are shorter than 0.38 times the dimension of the square cross-section. Similar 
limitations apply to the realization of steady two-dimensional convection with 
multiple cells in a three-dimensional geometry with square cross-section. Straus & 
Schubert (1978) have shown, at  R = 340 and 400, that there are finite-length square 
cylinders in which no steady, two-dimensional convection can exist irrespective 
of the number of cells; at R = 340 this includes the cube. These values of R lie 
below and above the value R N 380, which was shows by Straus (1974) to be the 
largest R for which stable two-dimensional steady convection in an infinite layer is 
possible. 

Steady three-dimensional convection in a cube can occur if R > 4n2 (Beck 1972). 
Holst & Aziz (1972) have carried out numerical computations of this type of convection 
for R = 60 and 120, and Horne (1979) has obtained solutions for R = 75,100 and 300. 
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Straus & Schubert (1979) have used the Galerkin technique to produce steady three- 
dimensional convection for Rayleigh numbers up to 150. When both steady two- 
dimensional and three-dimensional convection in a cube are possible, the mode 
adopted by the system depends solely on initial conditions (Straus & Schubert 1979). 
Heat transport is not necessarily maximized by the system. For R 5 97, steady two- 
dimensional convection is realizable in a cube, and it transports more heat than steady 
three-dimensional flow. Zebib & Kassoy (1 97 8) have investigated a three-dimensional 
flow which is maintained by the nonlinear interaction of orthogonal two-dimensional 
rolls. In a cube, this type of convection can occur for 47~2 c R c 4 . 5 7 ~ ~ ;  it  also trans- 
ports less heat than does the two-dimensional flow. For R > 4-5n2, even though this 
type of flow may exist, we have found that three-dimensional convection in a cube is 
fundamentally different from the superposition of orthogonal two-dimensional rolls. 
Nevertheless, it  does not transfer as much heat as does the unicellular two-dimensional 
roll until R exceeds 97. For 97 5 R 5 300, steady three-dimensional convection in a 
cube is the form of motion that maximizes the Nusselt number Nu. 

Based on the calculations reported in this paper and others carried out by Horne 
(1979), it can be concluded that three-dimensional convection in a cube becomes 
unsteady at  high Rayleigh number. We have found time-dependent, three-dimen- 
sional convection for R 2 320. Either steady or unsteady three-dimensional convection 
occurs at a particular Rayleigh number, never both. 

In summary, studies of two-dimensional convection need to be extended to deter- 
mine more carefully the onset of oscillatory behaviour as a function of Rayleigh 
number and cell number. Attention must be focused on determining the realizability 
of two-dimensional flows in three-dimensional geometries. Investigations of three- 
dimensional convection need to be extended to higher Rayleigh number to determine 
the basic characteristics of the flows and their heat transport. We attempt to fill these 
needs by carefully calculating two-dimensional, multicellular, steady and unsteady 
convection in square cross-sections for R as high as 1000, and three-dimensional, 
steady and unsteady configurations in cubes for R up to 500. We use the Galerkin 
procedure described by Straus (1974) for two-dimensional convection and by Straus 
& Schubert (1979) for three-dimensional flows. To avoid repetition, we only provide 
some general information about the calculations and proceed immediately to a dis- 
cussion of the results. The reader is referred to our previous papers for more detailed 
descriptions of the methods. 

2. Notational and mathematical preliminaries 
The Rayleigh number is 

oqp2KcdhT R =  
Pk ’ 

where a is the thermal expansivity of the fluid, g is the acceleration of gravity, p is 
the fluid density, K is the permeability of the porous medium, c is the fluid specific 
heat, d is the dimension of the square cross-section or the cubic box, ,u is the fluid 
viscosity and k is the average thermal conductivity of the fluid and solid matrix. 
The Nusselt number Nu is the ratio of the horizontally averaged upward heat flux 
to that which would occur by conduction alone in the absence of convection. 
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N is a measure of the number of Fourier coefficients used in a calculation. Two- 
dimensional solutions are superpositions of modes whose horizontal (x direction) and 
vertical ( z  direction) structures are given by 

{sin or cos (nnzld)} . {sin or cos ( j m / d ) } .  

In  the two-dimensional cases, the system was truncated according to n+ j  < N .  
Three-dimensional solutions have an additional sin or cos (mnyld) dependence (y is 
the other horizontal co-ordinate). In  the three-dimensional cases the truncation 
criterion is n + j  + m < N .  

Our previous calculations for R as large as 150 (Straus & Schubert 1979), which 
were carried out without any apriori restrictions on the modal amplitudes (other than 
the truncation described above), always produced solutions with certain symmetry 
characteristics. In  two dimensions, the only non-zero modes turned out to be those 
for which yn +j = yk, where y is the number of cells ( y  = 1,2 ,3 ,  . . . ) and k is a non-zero 
even integer. In  three dimensions, the non-zero modes satisfied j + m and n + m even. 
For the high Rayleigh number calculations reported in this paper, we used these 
symmetries, whose physical implications are discussed in Straus & Schubert (1979), 
to reduce the number of a priori unknown modal amplitudes. These symmetry 
requirements cannot be rigorously justified under completely general circumstances. 
We did test a number of solutions by numerically investigating whether the modes 
with zero amplitude in the symmetrized solutions would grow or decay from initial 
small amplitudes using a completely unrestricted calculation. The tests included both 
steady and unsteady, two- and three-dimensional solutions. In  the steady cases, the 
modes which were not present in the symmetrized solutions decayed. However, in 
the unsteady cases these modes did not decay. Rather, they acquired fluctuating 
amplitudes comparable to many of the symmetrized modes. Although they contribute 
to the unsteady flow, they do not alter any of its essential characteristics such as the 
Nusselt number range, period, etc. They also do not appear to make any significant 
modification to the value of R a t  which solutions become unsteady. Table 1 sum- 
marizes how the number of non-zero modes used in both the symmetrized and non- 
symmetrized calculations depends on N .  Our results show that the three-dimensional 
solutions, whether steady or unsteady, possess a symmetry in addition to those 
imposed, namely that the amplitudes of then, m, j and n,j ,  m modes are identical. Thus 
the number of non-zero and independent modes in three dimensions is even smaller 
than that listed in table 1. 

The two-dimensional flows are distinguished by the number of cells that would 
appear, for example, in the isotherm pattern as viewed in a vertical plane containing 
the motion. This appearance is determined by the dominant mode in the flow. Thus, 
for example, in single-cell convection n = j = 1 is the dominant mode, while in triple 
cell convection n = 1, j = 3 is the dominant mode. However, the n = 1, j = 3 mode 
can still contribute in a minor way to single-cell convection although the n = 1, j = I 
mode cannot contribute to triple-cell flow. The general character of a multicellular 
flow with y cells is specified by the condition already noted, namely that yn +j = yk 
(k is a non-zero even integer). 
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Two dimensions 

Number of non- 
zero modes after 

Number ofopriori symmetry 
N non-zero modea requirements 

8 
10 
12 
14 
16 

Three dimensions 10 
12 
14 

36 
55 
78 

105 
136 

220 
364 
560 

TABLE 1. The truncation scheme and the number of modes. 

20 
30 
42 
56 
72 

55 
91 

140 

3. Discussion of results 
( A )  Steady solutions 

Two- and three-dimensional convection is steady as long as the Rayleigh number is 
not too large. Tables 2 and 3 summarize the multicellular two-dimensional and three- 
dimensional cases, respectivoly. The change in Nusselt number with increasing N 
shows that the reported values of N u  (for the largest value of N )  are generally accurate 
to within 1 per cent. The asterisks in table 2 indicate that for certain values of R, the 
accuracy of the reported N u  values were not quantitatively determined by carrying 
out calculations with N > 16. However, we believe that these Nusselt numbers are 
accurate to within a few per cent. The dependence of N u  on R is also shown in figure 
1 for each of the multicellular two-dimensional and three-dimensional solutions. 

Single-cell, two-dimensional convection is definitely steady for R as large as 300; 
two-cell convection is steady for R as large as 650 and three cells are steady for R up to 
800. Three-dimensional convection is steady for R as large as 300. As discussed by 
Straus & Schubert (1979), the form of the convection is basically represented by the 
n = j = m = I mode. At Rayleigh numbers slightly larger than these values, the 
flows become unsteady. Single-cell, two-dimensional convection is definitely unsteady 
at R = 320, two-cell convection is unsteady at R = 700, and three-cell convection is 
unsteady a t  R = 1000. Three-dimensional convection is also unsteady a t  R = 320. The 
criterion we use to classify a flow as steady is that the time rate of change of each modal 
coefficient be a t  least three orders of magnitude smaller than the amplitude of the co- 
efficient. When this criterion is satisfied, the computation is immediately terminated. 
The precise value of R a t  the onset of unsteady convection is difficult to determine 
numerically because the amplitude of oscillation tends to zero as the critical value of R 
is approached. We will discuss the time-dependent solutions in a separate section. 

Single-cell, two-dimensional convection maximizes the heat transport in a cube 
for R s 97 (Straus & Schubert 1979), while three-dimensional convection has the 
largest Nusselt number for 97 s R 5 300. It is important to appreciate that the 
stability analyses of Straus (1974) and Straus & Schubert (1978) must be applied to 
ensure the realizability of the unicellular two-dimensional convection in the cube. The 
results of this paper by themselves would only support the conclusion that N u  for 
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Number of cells R Nu N 

100 2.65 1 8 
150 3.320 8 
150 3.322 10 
200 3.808 10 
300 4.510 10 
300 4.514 12 

150 3,245 8 
200 3.986 8 
200 4.015 10 
200 4.022 12 
300 4.980 10 
300 5.005 12 
340 5.293 12 
400 5.660 12 
400 5.677 14 
600 6.599 14 
600 6.624 16 
650 6.813 16 

109.66 1.0 
150 1.907 8 
200 3.130 10 
300 4.696 8 
300 4.876 10 
300 4.947 12 
340 5.449 12 
400 5.897 10 
400 6.045 12 
400 6.108 14 
600 7.421 14 
600 7.489 16 
800 8.312 16 

178.27 1.0 
200 1.308 10 
300 3,438 10 
400 5.272 12 
600 7.573 14 
600 7.715 16 
800* 9.005 16 
1000* 9.846 16 

266.87 1.0 
300 1.377 10 
400 3.304 12 
600 6.564 14 
600 6.593 16 
800* 8.602 16 
1000* 9.937 16 

- 1 39.48 1.0 

- 61.68 1.0 

- 

- 

- 

TABLE 2. Steady, two-dimensional calculations. 
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R N u  N 

200 4.410 10 
4.497 12 

250 4.999 10 
5.104 12 

300 5.432 10 
5.590 12 
5.642 14 

TABLE 3. Steady, three-dimensional calculations. 

10 

8 

6 

4 

s 

2 

30 

I 1 

100 
R 

1000 

FIGURE 1 .  Nusselt number N u  vus. Rayleigh number for two- and three-dimensional convection. 
The integers refer to the number of cells in the two-dimensional flows. Convection is steady over 
the Rayleigh numbers for which the curves are shown. Vertical lines indicate the range of N u  
observed in unsteady flows. At R = 1000, the Nusselt number for two-cell unsteady convection 
varies over the range indicated by the vertical line; also at R = 1000, N u  for three-cell unsteady 
convection varies over a range smaller than the size of the numeral 3 noted on the figure. 

steady unicellular convection in a square cross-section exceeds N u  for steady three- 
dimensional convection in a cube for R 2 97. For R ;L 300, the unsteadiness of both 
two- and three-dimensional convection makes it difficult to compare heat transports 
by different types of convection. Within the class of steady two-dimensional flows, 
single-cell convection has the largest Nusselt number for R 5 165, double-cell con- 
vection has the maximum heat flow for 165 5 R 5 305, triple cells maximize the heat 
transport for 305 5 R 5 535, and four-cell convection has the highest N u  for 

535 5 R 5 1000. 

Recall that systems will not necessarily evolve to the states which maximize the heat 
transport,. Instead, the final steady states chosen by a system depend solely on initial 
conditions (Straus & Schubert 1979; Horne 1979). 
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Our results for the heat transport by steady two-dimensional convection can be 
compared with a number of previously reported values of Nu. Caltagirone (1975) gives 
values of N u  for single cells a t  R = 100, 200 and 300 which are identical to the Nusselt 
numbers in table 2. He also gives N u  for two-cell convection at R = 200 and 300 in 
exact agreement with our calculations. His value of N u  = 6.822 for four cells at  R = 500 
compares well with our value of 6-75 from figure 1.  At R = 1000 he gives N u  = 10.190 
for four cells, some 3.5 yo larger than our value of 9.846. For five-cell, two-dimensional 
convection we can compare with his Nusselt numbers at R = 500, 800 and 1000. His 
values are 5.34, 9.15, and 10.63, respectively. Our values are 5.1 (from figure 1)) 
8-602 and 9.937, respectively. Caltagirone’s (1975) Nusselt numbers are high by about 
4.7 yo, 6.4 %, and 7 yo, respectively. Caltagirone’s (1975) finite-difference computations 
overestimate N u  by larger percentages as R increases. This is most likely a consequence 
of the fact that he did not refine his grid size with increasing R; instead he used a 
constant 48 x 48 grid for all Rayleigh numbers greater than 200. We have no way of 
assessing the accuracy of the solutions he reports at R = 2000. Horne’s (1975) values 
of Nu for one-, two-, and three-cell convection a t  R = 250, 375 and 500, respectively 
are 4-51, 6-17, and 7.79, substantially larger than our determinations of 4.18, 5.5, and 
6.9. Once again, we would attribute the overestimation of N u  to too coarse a grid in 
the finite-difference calculations. Horne’s (1979) value of N u  = 2-8 for single-cell 
convection is already 6 %  too high at  R = 100. Finally, Holst & Aziz (1972) gave 
Nu = 3-49 for single-cell convection at R = 120, a considerable overestimate (figure 1). 

Some Nusselt number comparisons are also possible for steady three-dimensional 
convection. Horne’s (1979) Nusselt numbers for R = 75 and 100 are only slight 
overestimates, while his value of Nu = 6-45 for R = 300 is rather high compared with 
our calculation of Nu = 5.61. Holst & Aziz (1972) found N u  = 3.94 a t  R = 120 and 
1-67 at R = 60, compared with the accurate values of N u  = 3-16 and 1-55. The 
analytic formula given by Zebib & Kassoy (1978) for the Nusselt number of a three- 
dimensional flow is inapplicable to convection in a cube with R > 4.517~. 

The onset of oscillatory convection in two dimensions has been reported by 
Caltagirone (1975) to occur a t  R = 384 & 5 for single cells; we find the onset at  a value 
of R between 300 and 320. For two cells, Caltagirone (1975) reports that oscillatory 
behaviour sets in at R between 800 and 1000; we find the occurrence between R = 650 
and 700. Horne & O’Sullivan (1974) state that unicellular flow is oscillatory at 
R 2 280; Horne (1979) finds oscillatory single-cell convection at R = 300. These 
results are in approximate agreement with our conclusions. 

( B )  Unsteady solutions 

We have already discussed the fact that both the two-dimensional, multicellular 
solutions and the three-dimensional solutions become unsteady for sufficiently large 
R. We have also given the approximate values of R at which the unsteadiness sets 
in for the different types of convection. Although we have not carried our computations 
to lasge enough R to observe unsteadiness in two-dimensional solutions with four or 
more cells, it is reasonable to conclude that all multicellular solutions will eventually 
become unsteady as R increases. The critical values of R at which oscillatory two- 
dimensional convection sets in are approximately proportional to the number of cells, 
at  least for one-, two- and three-cell convection. What is surprising, and disappointing 
in a sense, is that three-dimensional convection also becomes unsteady and at  a 
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Number of 
cells R 

1 320 
350 
400 
600 

2 700 
800 

1000 

3 1000 

N u  N Period 

4.62-4.63 
4.78-5.13 
5'09-5.45 
6.3-7.6 

6.93-7-07 
7.8-9.3 
6.8-11.3 

8-87-8.93 

10 
10 
12 
14 

16 
16 
16 

16 

0.014 
0.0 13 
0.012 
0.005-0*008 

0*005-0.007 
0.010 
0.013 

0.004 

TABLE 4. Oscillatory, two-dimensional calculations. 

R N u  N Period 

320 
330 
350 
400 
450 
500 

5-75858-5.758 65 12 
5.714-5-978 12 
5.7-6.3 12 
6.1-7.0 14 
6.3-7.4 14 
6.6-7.7 14 

TABLE 5 .  Unsteady, three-dimensional calculations. 

0.004 
0.004 
0.004 
0.0045-0*0065 
0.003-0*006 
0*002-0.006 

Rayleigh number approximately the same as the one a t  which unicellular two- 
dimensional convection becomes unsteady. Horne (1  979) has also found unsteady three- 
dimensional solutions at R = 300 and 400. The disappointment arises from the fact 
that, since the forms of convection are unsteady a t  high R, it is difficult to imagine 
how high Rayleigh number solutions could ever be produced without carrying out 
direct numerical computations. If convection were steady a t  high R, approximate 
descriptions of the solution, for example by boundary -layer theory, might be possible. 
Of course, it is conceivable that approximations would be found to adequately char- 
acterize aspects of unsteady flow; we are simply asserting that it will be much more 
difficult to come by these approximations for time-dependent flows. 

Tables 4 and 5 list the two- and three-dimensional flows we have found to be 
unsteady. Figures 2 and 3 show how the Nusselt number fluctuates with time for a 
few of these cases. It is clear from these figures that the fluctuations are generally 
complex in character and not repeatable in detail, making it difficult to precisely 
characterize these flows. Thus there is some uncertainty in the tabular entries. The 
ranges of N u  listed in the tables represent the smallest minimum and the largest 
maximum values of N u  observed during the extent of the computation. These values 
could change had we carried out the calculations for longer times (hopefully by not 
very much, however). These Nusselt number ranges are shown on figure 1 by the 
vertical lines. The periods in tables 4 and 5 represent typical times between succeeding 
maxima of Nu. (When a range, rather than a single value is given for the period, it 
indicates that we observed the period to vary over that range.) I n  all cases, the time 
step used in the calculations was a t  least an order of magnitude smaller than the 
period of oscillation. 

2 FLY 94 
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- 
R = 350 

- 

I I I 1 I I 1 I I 

S .2  I I I I I I I ! I 

0.30 0.35 
I 

0.40 

FIGURE 2. Nusselt number variations with time t in unsteady, two-dimensional, unicellular flows 
a t  two values of R.  The time scale is in units of the thermal diffusion time across the square. 

For a given type of convection, the amplitude of the Nusselt number fluctuation 
generally increases with R. When three-dimensional convection in a cube is steady 
and for R 2 97, it transports the maximum amount of heat. When three-dimensional 
convection in a cube is unsteady it transports more heat a t  the maxima of its Nu 
fluctuations than do any of the steady or unsteady two-dimensional flows in square 
cross-sections. However, the heat transport a t  the minima of the Nu fluctuations can 
fall below that of the two-dimensional solutions. Similar observations can be made 
about the heat transported by the multicellular two-dimensional solutions. For 
example, the heat flux carried by steady double-cell convection in a square exceeds 
that of steady unicellular convection for R 2 165. However, when the unicellular 
pattern becomes unsteady, it can transfer more heat a t  the maxima of the Nu 
fluctuations than does the still steady double-cell flow. For example, this can be seen 
in figure 1 a t  R = 600, where fluctuating unicellular convection has a higher maximum 
Nu than even the steady triple-cell flow. Even the average Nusselt number of one-cell 
flow exceeds Nu of the steady double cell a t  R = 600. Note that the maximum Nu of 
unsteady double-cell convection exceeds Nu of even the five-cell steady flow at 
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R = 400 
5.8 1 '  " I " ' 1  

0.75 0.30 0.35 
t 

n 

R = 500 
6.5 1 '  " I " " ' 1  1 '  ' I 

0-75 0.30 0.35 0.40 

t 

FIGURE 3. Nu &B a function oft  in unsteady three-dimensional convection. 

R = 1000. When the flows become unsteady, the average values of N u  do not define 
a smooth, natural extension of the steady Nu us. R curves. 

The character of the unsteadiness in two dimensions is shown in figure 2 for single- 
cell flows at  R = 350 and 600. At the lower Rayleigh number, the oscillation in N u  
is a simple, essentially repetitive fluctuation between two values with a well-defined 
period. A t  R = 600, the situation is quite different. There are both high and low 
maxima (and minima as well), no repeatable pattern can be discerned, and the time 
interval between successive maxima shows a clear variation which cannot be attri- 
buted to the time resolution of the computations. (The periods are at  least an order of 
magnitude longer than the time steps used.) From table 4, i t  can be seen that the 
period tends to decrease with R for the single-cell flows. However, the power-law 
dependence of period on R suggested by Horne & O'Sullivan (1978) seems to be an 
oversimplified description of the unsteadiness. In  this connexion, table 4 also shows 
an increase in period with R for double-cell convection. 

Figure 3 and table 5 describe the character of unsteady three-dimensional flows. 
The periods of the Nusselt number fluctuations are about a factor of 3 smaller than 

2-2 
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those observed for unsteady single-cell convection at comparable Rayleigh numbers. 
The period is essentially independent of R in the range of Rayleigh number considered. 
The fluctuations are relatively simple a t  R = 350; except for period and amplitude, 
they resemble those of the unicellular oscillatory flow shown in figure 2 for R = 350. 
At R = 400, the variations in Nu with time are more complex. There are both high 
and low maxima and period variations not unlike those encountered in the high 
Rayleigh number two-dimensional case of figure 2. There is a qualitative repeatability 
to the R = 400 case of figure 3 in that the high and low maxima occur alternately. At  
R = 500, the Nu vs. time pattern is still more complex with larger period variations 
and less repeatability. 

Laboratory experiments dealing with the onset of fluctuating convection in porous 
media have been carried out by Combarnous & LeFur (1969), Caltagirone, Cloupeau 
& Combarnous (1971) and Horne & O’Sullivan (1974). In  particular, Caltagirone et 
ul. (1 97 1) carried out experiments in porous layers with two different horizontal cross- 
sections, one nearly square and the other highly elongated. Fluctuating three- 
dimensional convection set in a t  Rayleigh numbers between 240 and 390 in the nearly 
square geometry; in the elongated geometry, two-dimensional unsteady convection 
set in at values of R between 190 and 305. This behaviour is consistent with our 
finding that the transition to fluctuating convection occurs a t  a value of R between 
300 and 320 for both two- and three-dimensional flows. 

4. Realizability of two-dimensional flow in three-dimensional 
configurations 

In  order to keep computational time to a minimum, the two-dimensional solutions 
of this paper were calculated using an algorithm which did not admit motions in the 
third dimension. Thus, these strictly two-dimensional flows may not be realizable 
in a three-dimensional geometry, as has already been noted. Each of the two-dimen- 
sional flows could be used to initialize a fully three-dimensional computation as a way 
of determining the stability of the two-dimensional flow to perturbations in the third 
dimension. However, such a procedure at  least partially offsets the original gain in 
computational time. Alternatively, one could use the stability analyses of Straus 
(1974) and Straus & Schubert (1978) to investigate the existence of the two-dimensional 
solutions in three-dimensional geometries. Straus’s (1974) result can be used to test 
the stability of two-dimensional flows in square cross-sections to  perturbations in 
the other dimension only in infinitely long cylinders with square cross-section. The 
results of Straus & Schubert (1978) can test the stability in cylinders of finite length, 
however only a t  a few values of Rayleigh number. Although a particular two- 
dimensional solution may not exist in the infinitely long cylinder, it may nevertheless 
exist in the finite cylinder because the perturbation which destabilizes it in the infinite 
cylinder may not fit within the cylinder of finite length. 

First, let us summarize what we can learn from Straus (1974) relevant to the 
realizability of the two-dimensional flows. He has shown that steady two-dimensional 
convection cannot exist in infinitely long cylinders with square cross-section at R 
greater than IV 200 and - 322 for flows with one and two cells, respectively. Convection 
with two cells is also unstable for R between y n 2  and 140. Multicellular convection 
with three or more cells is unstable for all R. Since the strictly two-dimensional 
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calculations of this paper show that steady flows with one, two and three cells occur 
for R as large as 300, 650 and 800, respectively, and steady motions with four and 
five cells occur for R very much in excess of 1000, there are large ranges of Rayleigh 
number in which the steady, multicellular, two-dimensional flows simply do not 
exist in the infinitely long cylinder. The transitions from steady to oscillatory two- 
dimensional convection are therefore meaningless for this geometry. 

From Straus & Schubert (1978), we can see how the finite length of a square cylinder 
modifies these conclusions, a t  least at  a few values of R. At R = 100, single-cell flows 
are stable for any cylinder length. Two-cell flows are stable to rolls in the orthogonal 
direction for cylinders with length smaller than 0.56 times the dimension of the square 
cross-section. Although double-cell convection cannot exist in the infinitely long 
cylinder at R = 100, it  can exist in sufficiently short cylinders. At R = 200, single-cell 
flows are stable in square cylinders shorter than 0.38 times the dimension of their 
cross-section. Unicellular flow is unstable if the cylinder length lies between 0 . 3 8 ~ ~  and 
0.61n (n is any positive integer) times the cross-section dimension; this includes the 
cube. Double-cell convection is stable at R = 200 consistent with the results of Straus 
(1974). A two-dimensional flow which is stable in the infinitely long cylinder cannot 
be unstable in the finite length cylinder because all possible orthogonal perturbations 
can exist in the infinite cylinder. For a Rayleigh number of 340, Straus & Schubert 
(1978) show that no steady multicellular solutions are possible in a cube or in cylinders 
with lengths between - 0.49 and N 0-78, and between N 0.35 and - 0.39 times the 
cross-section dimension. This conclusion even applies to two-dimensional convection 
in the orthogonal direction. Any multicellular flow can exist if the cylinder is extremely 
stubby, i.e. if its length is smaller than N 0.18 times the cross-section dimension. This 
is because no orthogonal mode can exist in this case according to linear stability 
theory. Double-cell flow can even be found in a cylinder whose length is smaller than - 0.21 times its cross-section dimension. Straus & Schubert (1978) also present results 
for R = 400. The persevering reader can deduce the limitations on the realizability 
of two-dimensional flows at this Rayleigh number. 

This discussion is by no means exhaustive of the implications of the stability 
analyses for the existence of the two-dimensional solutions. It should indicate the 
complexity of the issue and emphasize, as already mentioned, the extreme caution 
that must be exercised in comparing two- and three-dimensional solutions, and 
attributing physical reality to the two-dimensional ones. 

The authors wish to acknowledge useful discussions with R. N. Horne. This work 
was supported by the National Science Foundation under Grant Number ENG-76- 
82119. 
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